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ABSTRACT 

Some biometric algorithms lack of the problem of using a great number of features, which were extracted from the raw 
data. This often results in feature vectors of high dimensionality and thus high computational complexity. However, in 
many cases subsets of features do not contribute or with only little impact to the correct classification of biometric 
algorithms. The process of choosing more discriminative features from a given set is commonly referred to as feature 
selection. In this paper we present a study on feature selection for an existing biometric hash generation algorithm for the 
handwriting modality, which is based on the strategy of entropy analysis of single components of biometric hash vectors, 
in order to identify and suppress elements carrying little information. To evaluate the impact of our feature selection 
scheme to the authentication performance of our biometric algorithm, we present an experimental study based on data of 
86 users. Besides discussing common biometric error rates such as Equal Error Rates, we suggest a novel measurement 
to determine the reproduction rate probability for biometric hashes. Our experiments show that, while the feature set size 
may be significantly reduced by 45% using our scheme, there are marginal changes both in the results of a verification 
process as well as in the reproducibility of biometric hashes. Since multi-biometrics is a recent topic, we additionally 
carry out a first study on a pair wise multi-semantic fusion based on reduced hashes and analyze it by the introduced 
reproducibility measure. 
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1. INTRODUCTION 
The authentication of information and persons is one important part of the IT security. For user authentication, today 
there are three main methods: secret knowledge, personal possession and biometrics. While secret knowledge is based on 
confidential information, which is only known by the authorized user (e.g. password), personal possession methods use 
private token in possession of the authorized person (e.g. smart card). Common problems of both, knowledge and 
possession are caused by the fact that the authentication object can be handed over, stolen or get lost, and so it can be 
possibly used by non-authorized persons. User authentication based on biometrics provides a solution for this problem, 
because the authentication object is directly linked to the body and/or the behavior of the person. Methods based on 
passive biometric traits use static information of a part of a person’s body (e.g. fingerprint), while active methods are 
based on dynamic information obtained from an action performed by a person (e.g. handwriting). 

The generation of hash values based on biometric input is a recent topic in current biometric research. One goal of the 
determination of a fix hash value for a biometric trait of one person from its fuzzy input data is to assure either 
authenticity and integrity or confidentiality and privacy of biometric information. Another aim can be the generation of 
unique strong keys for cryptographic purposes, since the biometric information of a person is available anytime and 
anywhere, without the need to remember secret information or to present a special token. A further field of application 
could be the embedding of biometric hashes into parts of ID documents as digital watermarks. For example, embedding 
of biometric information (e.g. based on the handwritten signature) into the face image of a travel document, in addition 
to storage on integrated chips, appears feasible. Here one problem is the limited capacity of the cover medium as 
described in [1], [2] and [3] and the capacity/transparency tradeoff problem. Consequently, storage of additional 
information such as biometric data by means of digital watermarking is possible only up to a certain degree without 
influencing the quality of the cover medium significantly. Thus embedding compact biometric hashes rather than 
complex raw data may enable alternative storage paradigms for biometric information in documents. 

In the literature today, a number of approaches can be found describing methods for the generation and use of biometric 
based hashes. In the following we present a small selection of publications without neglecting others. In [4] the authors 



present a method to calculate a cryptographic key based on a spoken password. Therefore an n-dimensional (n=12) 
vector of cepstral coefficients is used as well as an acoustics model, which is speaker dependent. Based on these 
components segmentation is carried out in order to create different types of features as basis of a so called feature 
descriptor which can be used as hash value. The biometric hashing method described by Vielhauer et al. in [5] is based 
on online handwriting biometrics and determines a feature vector of statistical parameters. These parameters are 
transformed into a hash value space using an interval mapping function, which results in a hash vector as feature vector 
representation based on an individually statistical model of each user or a given user group, which is determined during 
enrollment process. In section 2 this method is described in more detail since we used this algorithm for the evaluations 
in this paper. A method for the generation of reference data in the field of biometric face recognition is described in [6]. 
Based on the assumption that each element of the feature vector fluctuates by a certain value, a number of Gauss 
functions can be created for each registered person. The values determined in this way can be used as reference data. The 
parameters of the transformation are necessary for the authentication process and have to be stored on a capable device 
(e.g. smart card). In [7] the authors propose a biometric hash generation based on a human’s fingerprint where the 
representation of fingerprint minutia points is based on complex numbers. Symmetric complex functions are used as hash 
functions, and a corresponding matching method is also proposed. In [8] a function based feature extraction for dynamic 
signatures is presented, which combines discrete wavelet transform and discrete Fourier transform in order create a 
compact representation. Using a pseudo random number generator and a special mixing method (so-called BioPhasor) 
based on user tokens, the biometric information is transformed in a one-way manner. The last steps are a discretization to 
avoid the reconstruction of the original biometric trait and a Gray encoding to ensure the discriminatory power of the 
hash. 

One problem of biometric systems may be caused by a high number of features used as representation of the biometric 
trait. In some cases not all of them contribute to the authentication or hash generation process significantly. Here the 
reason may lie in correlation between individual features or the fact that a feature is not suitable to represent a biometric 
trait. Feature selection methods try to reduce such a feature set without or with marginal consequences for the 
applications result. Another case is the use of sensors with different technical characteristics for the same application. For 
example, in handwriting verification some sensors support features such pen tip pressure or the pen orientation angles 
azimuth and altitude (e.g. some graphical tablets), while other devices are not able to acquire those data from the writing 
process (e.g. personal digital assistants). Those features and their derivates should be disregarded to save computation 
power and runtime resources. 

In this paper, we present a feature selection strategy based on the information provided by each element of a biometric 
hash vector used as feature representation of dynamic handwriting. To determine the information gain provided by an 
individual feature, the entropy analysis introduced by Shannon in [9] is used. Since one consequence of the feature 
selection is a reduction of the number of representative elements within the hash vector also a fusion of hashes is 
proposed to preserve or extend its dimensionality after applying feature selection. 

This paper is structured as follows: The next section introduces the Biometric Hash algorithm, which is used in our work 
for the generation of hashes based on dynamic handwritten data as well as for the verification of biometric handwriting. 
In the third section, a feature selection strategy is described, which bases on an empirical entropy analysis. The fourth 
section explains the fusion strategy of combining biometric hashes based on different handwritten semantics. The 
evaluation database, methodology and the results with regard to biometric error rates and reproducibility of the hashes 
are described in the fifth section. The last section concludes this paper and gives an overview of future work in this field 
of biometric research. 

2. BIOMETRIC HASHING 
The method for the generation of hashes based on dynamic handwriting, the Biometric Hash algorithm, is initially 
introduced in [5] and enhanced in [10] and [11]. The functionality of the last version of this algorithm is based on 69 
statistical features derived from measurements of horizontal and vertical pen position x(t) and y(t), pen tip pressure p(t) 
and pen azimuth and altitude Θ(t) and Φ(t) respectively are taken from a digitizer device. 

The Biometric Hash algorithm (see Figure 1) calculates the statistical feature vector containing k=69 statistical 
parameters (online and offline features), which are transformed into a hash value space by a so-called interval mapping 
function, in Figure 1 denoted as key generation. This mapping results in a feature vector representation )...,,( 10 −= kbbb
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supported by a person’s or person group’s specific statistical model and consisting of an interval matrix (IM), which is 



obtained during the enrollment process. The left part of Figure 1 shows the five discrete signals, which are taken from 
the digitizer tablet during verification process. Five signals are used by the key generation module to determine the 
current hash vector b

r
, which is compared to a stored reference vector 
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 against some decision threshold value T in the 
hash authentication module. The authentication is performed by calculation of the Canberra Distance between the vector 
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 obtained from the current presented handwriting and the reference vector 
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. Finally, a verification results in a 
binary True/False decision with respect to the current biometric data and the given threshold T. 
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Figure 1. User authentication based on Biometric Hash 

For the hash generation, the Biometric Hash algorithm can be used without the Hash Authentication module. In this case 
the system’s output is the hash vector created based on helper data (IM) and current data instead of the authentication 
decision. 

For the determination of the IM, there are two possibilities to affect the length of the mapping interval: local 
parameterization by the tolerance vector (TV) and global parameterization by the tolerance factor (TF). Both parameters 
are used to scale the individual interval length, which is necessary to map a statistical feature vector element into a hash 
vector element. Therefore, the TV consists of k individual values, where each is assigned to the corresponding feature to 
compute the interval length. The TF is one scalar value, which is used for the calculation of each single interval length. 
For the evaluation described in this paper, the tolerance vector is determined using the statistical features derived from 
handwriting data of a training set of users (see section 5.1). The tolerance factor is set to 3 for all tests, unless otherwise 
indicated. 

In this paper we study the influence of the entropy based feature selection and multi-semantic fusion on both, verification 
mode (see section 5.3.2) and hash generation mode (see section 5.3.3). 

3. EMPIRICAL ENTROPY BASED FEATURE SELECTION 
The hash vector, generated by the Biometric Hash algorithm, has a dimensionality of 69, based on the used 69 statistical 
features extracted from the handwriting process. Some of the features may have no or little contribution to the hash 
generation process. If it is possible to find and suppress those features, which have neither influence on the 
reproducibility of the hash vectors nor on the verification performance, the calculation complexity and time are likely to 
be decreased. In order to reduce the dimensionality of the hash vector, we carry out an entropy analysis of the single 
vector components. This means, we study the information content of each single component of the generated biometric 
hash vector, based on the information entropy method, which is presented by Shannon in [9]. 

In [10] an entropy analysis is suggested to estimate the possible value space that can be used by the biometric hash 
algorithm for dynamic handwriting. The examined algorithm is the same as we are using in our work described in this 
paper. 

Determination of entropy 

The entropy H introduced by Shannon in [9] describes the degree of information, which can be contained in a given set 
of data. It can be determined using the following equation: 
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In this formula, pi is the occurrence probability of the i-th value while n is the number of different values observed for an 
index z. To translate this statement to the individual entropy of the biometric hash vector components, we build the 
following model: There is a set of m biometric hash vectors BH=BH1,…,BHm with BHj=(bj,0,…,bj,k-1) for j=1,...,m, 



created on a given set of samples from different users on the same semantic class and hash generation parameterization, 
and containing k elements. Then the occurrence probability pi describes how often a single value occurs in all biometric 
hash vectors on the same component index z (z=0,…,k-1). It can be calculated by the ratio of the number of occurrences 
of the i-th value and the sum of occurrences of all values on index z. The entropy H(z) of the z-th element of the 
biometric hashes is calculated based on the equation (1) and the corresponding probabilities of the values stored on index 
z in the hash vectors. 

In order to carry out a feature selection based on the information contents of the single elements of the biometric hash, 
only those features are taken over into a new reduced feature vector, which have an entropy higher than 0. To prove the 
concept of our feature selection method based on entropy analysis, we run verification tests and/or hash reproducibility 
tests before and after feature selection. We assume that if we take over only the features into the new feature set with 
entropy higher then 0, the verification results as well as the hash reproducibility will change only within a minimal 
magnitude. The corresponding results and the underlying evaluation methodology are presented in section 5. 

4. MULTI-SEMANTIC FUSION APPROACH 
In this section we present a new biometric fusion strategy based on the pair wise combination of the reduced biometric 
hash vectors of two semantic classes. In the context of biometric handwriting, semantics are alternative written contents 
in addition to the signature. Semantics can be based on the additional factors of individuality, creativity and/or secret 
knowledge, e.g. by using passwords, personal identification numbers or arbitrary symbols. In [11], Vielhauer shows that 
the usage of such alternative contents may lead to similar results as the usage of the signature in context of online 
handwriting based authentication performance. 

A multi-biometric system bases in general on one of three fusion levels ([12]) depending on the point of fusion within 
the single biometric components used: feature extraction level, matching score level or decision level. Biometric 
components can be for example modalities, algorithms or units. The data itself or the extracted features are fused at the 
feature extraction level. At the matching score level, the matching scores of all components involved are combined by 
the multimodal system. In order to parameterize the fusion, matching scores of the different components may be 
weighted with regard to their individual authentication performance for example.. For a fusion on decision level each 
component involved is processed completely and the individual decisions are fused to a final decision. 

Based on the number of biometric components involved in the fusion process Ross and Jain differentiate in [12] between 
the following four scenarios for automatic biometric fusion: single biometric trait – multiple sensors, single biometric 
trait – multiple classifiers, single biometric trait – multiple units and multiple biometric traits. 

Since the fusion proposed in this paper is executed on the feature extraction level in the hash domain based on hashes of 
different semantics, it is called multi-semantic hash fusion. It can be assigned to the single biometric, multiple units’ 
stage. 
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Figure 2. Multi-semantic hash fusion scheme 

Figure 2 shows the process steps required for the new multi-semantic hash fusion approach from the presentation of 
biometric traits up to the output of the fused hash vector. The first step is the data acquisition of two semantics, which are 
the input for the next step, feature extraction and hash generation. In this process step, a statistical feature vector is 
calculated from each of the raw data. Then, biometric hash vectors b and c are derived from the statistical values, where 
each hash element is based on one corresponding statistical feature element. Thus, for statistical feature vectors and 
biometric hash vectors, the dimensionality (k) is equal. In the next (optional) step the entropy based feature selection is 
carried out to reduce the given hash vectors b and c by the information density of its elements. The fsc (feature select 
count) as dimensionality of the fused reduced hash vectors b′ and c′ is the sum of their individual dimensionalities fsc1 
and fsc2, respectively. The dimensionalities of the reduced hash vectors b′ and c′ generated from both semantics (fsc1 for 



semantic 1 with fsc1 ≤ k, fsc2 for semantic 2 with fsc2 ≤ k) are not necessarily being equal at this stage. The fusion of the 
two hashes is the last process step, which is carried out as concatenation of both reduced hashes. 

5. EVALUATION 
This section firstly describes the test data used for evaluation. Following, our methodologies are presented, which are 
used to study the influence of the reduced feature sets to the biometric handwriting verification as well as to the 
biometric hash generation. For the latter a new method is introduced to measure the reproducibility and collision of the 
hashes. Finally, the results for both, verification and hashing are presented and discussed.  

5.1 Evaluation database 
The entire test set is based on 86 users, which have donated 10 handwriting samples for four different semantics. 
Semantics are alternative written contents to the conventionally used signature, which is generally associated with 
biometric handwriting authentication. In our test setup we use the four semantics PIN, Place, Pseudonym and Symbol. 
The PIN is given as a sequence of the five digits “77993”. Using this semantic the individual kind of writing plays a 
more important role than the content to recognize a person as its self or distinguish him/her from other users. The 
semantic Place is the individual answer to the question “Where are you from?”. This answer includes personal 
knowledge in a certain degree which, however, is not absolutely secret. Since most of the test subjects refrained from 
donating their real signature, we use the semantic Pseudonym as anonymous substitution of the individual signature. The 
Pseudonym is a name freely chosen by the writer, which had be trained several times before the acquisition. The freely 
chosen Symbol holds individual creative characteristics and additionally provides a knowledge based component in form 
of the sketched object (e.g. order of single strokes to create the symbol). 

In order to determine the individual entropy of each element of the hash vectors as described in section 3, and to evaluate 
if there any influence of the suppressed features, a training set (hereafter set T) of 17 users and an evaluation set 
(hereafter set E) of 69 users are extracted from the entire set of 86 persons. Both sets are disjoint and structured as 
follows: From the 10 handwriting samples S=S1,…,S10 of each person and each semantic the first 5 samples S1,…,S5 are 
taken to create 5 reference sets, using a leave-one-out strategy. This means a combination of 5 choose 4, i.e. 5 different 
references (R=R1,…,R5) are created, containing 4 handwriting samples each. From these references, each is used to create 
an interval matrix (IM) as basis for the biometric hash generation. Based on these interval matrices and the remaining 
samples S6,…,S10, 5 biometric hashes are created for each user of set T and set E respectively. 

The entropy analysis is executed based on set T, which is also used to determine the tolerance vector TV based on all 
users of set T. The evaluations in form of a biometric error rate analysis and/or a Hamming Distance based histogram 
analysis are carried out on set E. 

5.2 Evaluation methodologies 
In this subsection the methodologies are described to study the influence of the suppressed features on the authentication 
performance based on biometric hashes as well as on the reproducibility of the hashes. As a novel measurement to 
determine the reproduction ability of a biometric hash generation algorithm, the Hamming Distance based histogram 
analysis is presented. 

5.2.1 Biometric error rate analysis 
Due to the fact, that the authentication performance of a biometric system cannot be measured directly, it has to be 
determined empirically. Basis for this determination are typically biometric error rates: While the FNMR (false non 
match rate) calculates the ratio between the number of rejected authorized persons and the entire number of 
authentication attempts, the FMR (false match rate) describes the ratio between accepted non-authorized users and the 
entire number of authentication attempts. A common measurement in biometric research provides the EER (equal error 
rate), where FNMR and FMR are identical. It can be used as normalized reference point for comparison in terms of one 
scalar value of biometric systems. 

In this paper, we use the biometric error rates to ensure, that the reduction of the feature set using the entropy analysis 
has no or only a marginal influence to the verification performance of the biometric handwriting system. However, our 



main goal is to improve the reproduction of biometric hashes based on dynamic handwriting. For this reason we analyze 
this reproduction performance by using the Hamming Distance to compare the reference and current hashes. 

5.2.2 Hamming Distance based histogram analysis 
One goal of the generation of hashes from biometric input data is to produce a unique reproducible value for a person, 
which can be used for user authentication or as cryptographic key, for example. The problem here lies in the fact that it is 
impossible to acquire identical biometric data from a person at different times. Based on the data obtained in this way the 
hash generation method looks to generate identical hashes from data of the same person and/or different hashes from 
data of different users. In order to provide a measure for the degree of the reproducibility and/or false generation of such 
hashes, we suggest the Hamming Distance ([13]) as already shown in [11]. In this context, the Hamming Distance 
measure determines the number of positions, where two biometric hashes are different and returns a value between 0 and 
the number of elements. In the optimal case a biometric hash method generates the same value each time a person 
presents the corresponding biometric trait, and the Hamming Distance will be 0. In equation (2), x and y are the biometric 
hash vectors of dimension k we want to compare, and xi and yi are the corresponding elements of x and y at index i. The 
direct comparison of xi and yi is 0 if the two elements are equal and 1 else. The Hamming Distance between the hashes x 
and y is the sum of the results of all single comparisons. 
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Derived from the properties of cryptographic hashes, error rates to estimate the performance of biometric hash 
algorithms should be considered in the reproduction and the collision in addition to FNMR, FMR and EER, known from 
biometric verification and identification based on thresholds. In our Hamming Distance based histogram analysis, we 
compare all generated biometric hashes of each person to each other hash of the same person to calculate the intra-class 
reproduction rate (hereafter reproducibility rate, RR). The inter-class generation rate (hereafter collision rate, CR) is 
determined by the comparison of a person’s biometric hashes with the hashes of all other users. Both rates are logged in 
two histograms, one for the reproducibility rate and one for the collision rate. In the best case, each comparison between 
hashes of the same person and semantic should be result in a 0, while the comparison between hashes of two persons 
should be greater than 1. 

In order to have an indicator of the trade-off relation between RR and CR an additional measure is introduced here: the 
collision reproducibility ratio (CRR). It is the result of the division of CR by RR. Since one aim of biometric hashing is 
to reproduce hashes of each person with a high degree, while hashes of different persons should be different, the CRR 
should be very small. 

5.3 Results 
This subsection describes the outcomes of the entropy based feature selection and the influence of the used semantic on 
the suppressed features. Also the results are presented for the verification and the hash reproducibility, each determined 
on the complete feature set and/or the reduced feature set after feature selection. The corresponding tests are carried out 
on the single semantics as well as on their pair wise fusion. 

5.3.1 Feature Selection 
As described in section 3 an empirical feature selection is carried out based on an entropy analysis. For each semantic the 
entropy of the individual elements of the biometric hash vector is calculated to determine its contribution to the hash 
generation. All elements, which result in an entropy of 0 are suppressed, while all others are taken over in the new 
reduced feature set. 

In Table 1 the results of the entropy analysis are shown for all four semantic classes. It can be seen that the number, the 
selected features as well as the entropy of selected features differ between the semantics. Table 1 shows in the first 
column (Feature Number) the number of each feature fj with j=0,...,k-1 and k=69. The cells of the other four columns, 
which are related to the four semantics, containing a value higher than 0, if the corresponding feature is selected, in the 
other case the cells hold a 0. As shown in the last row of Table 1, the fsc (feature select count) as number of features 
taken over into the reduced feature set, amounts 33 for semantic PIN, 40 for Place and Pseudonym, and 39 for Symbol. 



The rows in the table, that are printed bold and italic, containing those features, which were selected based on the entropy 
analysis for all four semantic classes in our test scenario. Contrarily to these 19 features, there are 12 features, which 
were not selected for any of the four semantics (see rows containing 0 and marked with gray background ). In our future 
work for both groups it should be analyzed, whether these are features, which should be selected or suppressed, 
respectively, in any case. The remaining features should be investigated regarding the influence of the semantic used. 

Table 1. Entropy values of each individual feature per semantic class 

Feature 
Number PIN (77993) Place Pseudonym Symbol  Feature 

Number PIN (77993) Place Pseudonym Symbol 

f0 0,1247 0,3652 0,1008 0,1149  f35 0,1162 0,0239 0 0 
f1 0,2738 0,2203 0,2527 0,2800  f36 0 0 0 0 
f2 0 0 0,0239 0,1008  f37 0,0239 0 0,2447 0,5068 
f3 0,2203 0,0923 0,0923 0  f38 0 0 0 0,0239 
f4 0,0923 0 0 0  f39 0 0,0239 0,0671 0,3679 
f5 2,7045 0,7493 1,8195 2,3521  f40 0,0923 0,4867 0,0239 0,0239 
f6 1,2569 1,4625 1,6610 0,9826  f41 0 0,4239 0,2082 0 
f7 0 0,0239 0,1200 0  f42 0 0,3191 0,1401 0,0769 
f8 1,0306 1,0729 1,9549 0,9465  f43 0,4119 0 0,4825 0 
f9 0 0,0432 0,0239 0  f44 0,3652 0,0923 0,4140 0 
f10 0 0,1608 0,1008 0  f45 0 0,1008 0 0 
f11 0 0,0923 0,1008 0  f46 0 0 0,1102 0,0239 
f12 0 0 0 0  f47 0,0923 0 0 0,2273 
f13 0,9887 1,3283 0,7533 0,9505  f48 0 0 0 0 
f14 1,1157 0,3204 0,7488 0,3737  f49 0,1608 0 0,0432 0 
f15 0,4946 0,4140 0,2203 0,3119  f50 0,0923 0 0 0 
f16 1,1072 0,6770 0,9150 0,5226  f51 0 0,0923 0 0,0432 
f17 0,0239 0,1008 0 0  f52 0 0 0 0,2082 
f18 0 0 0 0  f53 0 0 0 0 
f19 0 0 0 0  f54 0,0239 0 0 0,0923 
f20 0 0 0 0  f55 1,3867 1,1882 1,0123 1,5966 
f21 0 0 0 0  f56 0 0 0 0 
f22 1,3233 1,0697 0,9538 1,3464  f57 0,1348 0,0769 0,1733 0,1211 
f23 0 0 0 0  f58 0 0,0769 0,0432 0,0923 
f24 0 0 0 0  f59 0 0,0923 0,1149 0 
f25 0 0,0923 0 0,1690  f60 0 0 0 0,0923 
f26 0,1008 0,0923 0 0,0239  f61 0,4225 0,3228 0,1037 0,4140 
f27 0,0239 0 0 0,2375  f62 0 0 0,3228 1,0000 
f28 0 0,1037 0 0,0239  f63 0 0 0 0 
f29 0,3228 0,2738 0,2527 0,3035  f64 2,4016 1,9914 1,8672 1,8992 
f30 0,0923 0,1844 0 0  f65 0,0923 0,3889 0,5723 1,0000 
f31 0 0 0,0718 0,0923  f66 0,1008 0,2328 0,4501 0,5690 
f32 0 0,0239 0,0239 0,0923  f67 0 0,0923 0 0 
f33 0,0479 0,0923 0,5743 0,0606  f68 0 0 0,0769 0 
f34 0 0 0,7721 0,1844  fsc 33 40 40 39 

 
For a detailed description of the 69 statistical features used to generate the biometric hash, the interested reader is 
referred to the literature ([5], [10], [11]). 

5.3.2 Biometric error rate analysis 
In order to prove the idea to use the entropy analysis as basis for a feature selection strategy in a biometric verification 
system, we compare the verification results of the single semantics and their multi-semantic fusion before and after 
feature selection to each other. In the case that there is no loss of information by suppression of features with an entropy 
equal to 0, the EER should not change significantly after feature selection. 

As shown in Table 2, there is no change in the EER values after the feature selection for all four semantics as well as for 
their fusion. The fusion is based on the matching score level and uses a mean rule, which weights both scores with a 
value of 0.5 and summates the results to a final fused score. This observation shows that there seems to be no 
contribution of the suppressed features to the verification process. Note, for this evaluation, we assume that there is no 
temporal dependence between semantic 1 and semantic 2 (e.g. EER of fusion of PIN and Symbol is equal to EER of 



fusion of Symbol and PIN). Thus, the outcome of the fusion is symmetric with respect to the sequence the semantics 
taken into account, leading to the triangular characteristics of the results presented in Table 2. 

As shown in Table 2 the best single verification result with respect to the EER is reached using the semantic Symbol 
with EER=0.047. The second best result is based on semantic Place (EER=0.058). Another observation from Table 2 is 
that all pair wise fusion combinations improve the results determined by the corresponding semantics. Here the lowest 
EER of 0.022 is calculated based on the combination of Place and Symbol. 
 

Table 2. Equal error rates per semantic class and their pair wise fusion before (EERbefore) and after (EERafter) feature 
selection 

  Multi-semantic fusion 
 single Symbol Pseudonym Place 

Semantic EERbefore EERafter EERbefore EERafter EERbefore EERafter EERbefore EERafter 
PIN 0.077 0.077 0.028 0.028 0.051 0.051 0.033 0.033 

Place 0.058 0.058 0.022 0.022 0.038 0.038   
Pseudonym 0.094 0.094 0.036 0.036    

Symbol 0.047 0.047 - -    

5.3.3 Hamming Distance based histogram analysis 
Reproducibility of hashes using single semantics 

Figure 3, Figure 4 and Table 3 show the results of the Hamming Distance based histogram analysis. In the second and 
third row of Table 3 the reproducibility rate of genuine hashes by the corresponding genuine users is shown for the 
complete (row all) and the reduced feature set (row reduced) in dependency of the semantic class. The fourth and fifth 
rows are showing the collision rate for the complete and reduced feature sets, while the sixth and seventh rows present 
the collision reproducibility ratio. The reproducibility rate of genuine hashes increases in all four cases by a minimal 
magnitude after the feature selection. For example, the highest change is reached by the semantic PIN with a relative 
improvement of approx. 5%, while the smallest change is caused by semantic Symbol with approx. 3.2% (see Table 3). 
On the other side, after feature selection the collision rates for all four semantics degrade compared to those before 
feature selection. Here the highest decline with regard to the generation of genuine hashes by random imposters amounts 
approx. 49% based on semantic Symbol. The smallest degradation of 24% is calculated for the semantic Place (see  
Table 3). 

Table 3. Reproducibility and collision rate for complete and reduced feature sets per semantic class 

 

 

The results show that there is a dependency between the reproducibility rate and/or collision rate and the features used, 
even if some of them have zero intra-class entropy. Thus, the entropy analysis based feature selection leads to an 
improvement of the reproducibility of genuine hashes, which must be paid with a higher false generation of hashes 
produced by other users. 

In order to try to improve the reproducibility rate further more, we have performed additional test with an increasing 
tolerance factor (TF) as parameter of the Biometric Hash algorithm. The TF is a scalar value, which is used to scale the 
width of the mapping interval during the hash generation. The results presented in Table 3 are determined using a TF of 
3. Figure 5 shows the reproducibility rate (upper lines) and collision rates (lower lines) in dependency on the TF before 
and after feature selection. The incrementing of the TF leads in the first two steps (TF=7, TF=10) to an improvement of 
the reproducibility rate. Above a TF of 10 the values are changing only in small magnitude and then it seems that they 
are converging to a certain limit by reaching saturation. This observation can be made for all four semantics, but with 
varying limits. This effect of saturation cannot be observed for the analysis of the biometric error rates 
(FNMR/FMR/EER) in our experiments. Further, the graphs for the collision rate are increasing faster than the 

Measurement Features PIN Place Pseudonym Symbol 
all 75.94 68.46 68.35 73.91 RR 

reduced 79.77 71.42 70.67 76.29 
all 7.81 5.74 6.13 3.87 CR 

reduced 10.71 7.12 8.96 5.75 
all 0.103 0.084 0.090 0.052 CRR 

reduced 0.134 0.100 0.127 0.075 



corresponding lines of the reproducibility rate for increasing values for TF. The slope declines with increasing TF, 
however, saturation is not reached at TF=40. 
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Figure 3. Reproducibility rate (bars) and collision rate (line) before feature selection 
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Figure 4. Reproducibility rate (bars) and collision rate (line) after feature selection 
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Figure 5. Reproducibility rates (upper graphs) and collision rates (lower graphs) in dependency on the tolerance factor 

before (a) and after (b) feature selection 



Reproducibility of multi-semantic fused hashes 

The concatenation of two different hashes generates a new hash with a higher dimensionality based on two existing 
hashes. Thus, the reproducibility of the new hash depends on the reproducibility of the both hashes involved. Based on 
this assumption, we can state that the reproducibility of fused hashes cannot be better than the worst reproducibility rate 
of each of the hashes used for the fusion. For the evaluation in this paper, the order of concatenation is not taken in 
consideration. This means, the results are identically for RR, CR and CRR, respectively, independently whether 
semantic 2 is concatenated to semantic 1 or vice versa. 

Please note that the length of the fused biometric hash vector depends on the length of the two single hash vectors of the 
semantics involved. Thus, in some cases it is not possible to generate hashes with the same length from each pair wise 
concatenation of the semantics. One solution could be to fill the hashes with values generated by other mechanisms, e.g. 
based on the written content or the id of the user. 

Table 4. Reproducibility and collision rate for complete and reduced feature sets for pair wise semantic hash fusion 

Semantic 2 Semantic 1 Measurement Features 
Symbol Pseudonym Place 

all 57.04 55.13 54.32 RR 
reduced 63.59 61.22 59.59 

all 1.00 0.88 1.53 CR 
reduced 1.59 2.29 2.70 

all 0.017 0.016 0.028 

PIN 

CRR 
reduced 0.025 0.037 0.045 

all 52.64 48.06  RR 
reduced 56.00 50.84  

all 0.75 0.98  CR 
reduced 1.27 1.70  

all 0.014 0.020  

Place 

CRR 
reduced 0.023 0.033  

all 52.99   RR 
reduced 56.23   

all 0.50   CR 
reduced 0.83   

all 0.009   

Pseudonym 

CRR 
reduced 0.015   

 

Table 4 shows the results of the pair wise multi-semantic hash fusion. The intersections of rows and columns of the 
different semantics are showing the corresponding fusion results for the reproducibility rate (RR), collision rate (CR) and 
collision reproducibility ratio (CRR) and the two feature sets (Features – reduced/all) each. As assumed, the first 
observation is, that the fusion results for the reproducibility rate are worse than the results obtained based on the single 
semantics. For example, for the fusion of PIN and Symbol RRs of 57.04% and/or 63.59% for the complete and reduced, 
respectively, feature set were calculated. This corresponds to a relative degradation of approx. 28%/25% in comparison 
to the best single result determined for the PIN (RR=75.94% before, 79.77% after feature selection). Further, the 
collision rates are significantly lower than those of the single semantics involved. Here the relative decline lies between 
75% and 92%. The best CR of 0.50% was determined for the fusion of the semantics Pseudonym and Symbol based on 
the complete feature set, while the corresponding RR amounts 92.55%. The change of the CRs before and after the 
feature selection is smaller for the fused semantics than for the single semantics, which results in a smaller CRR 
compared to the single semantic based hashes. 

6. CONCLUSIONS 
In this paper, we present a strategy to identify features without any or little influence to the generation of biometric 
hashes, which is based on entropy analysis introduced by Shannon in [9]. Based on this strategy, a feature selection is 
carried out. Therefore, those features are taken over into a new reduced feature vector, which have an entropy higher 
than 0. As a new measure we introduce the analysis of the biometric hash reproducibility rate based on the Hamming 
Distance. The reproducibility rate (RR) shows, how is the performance of a hash generation algorithm with respect to 
generate the same hash for the same person and the same written content. The collision rate (CR) is a measure for the 
generation of genuine biometric hashes by non-authorized users. The collision reproducibility ratio (CRR), as third 
introduced measure, indicates the relation between CR and RR. In order to find a suitable working point for a biometric 



hash generation algorithm, one solution can be to minimize the CRR. Further, we have suggested a novel concept in the 
domain of multi-biometrics: Multi-semantic fusion of biometric hashes generated using different writing contents. Using 
an analysis based on the biometric error rates FNMR, FMR and EER, we have shown that there is no degradation in the 
recognition accuracy before and after feature selection for single semantics as well as for the pair wise multi-semantic 
fusion. 

The experimental study of the influence of a reduced feature set has shown that the RR increases, if the number of 
features becomes smaller. This means, that the reproduction of genuine hashes becomes better by suppressing such 
features, which have an entropy equal to 0. However, also the CR rises after feature selection. Thus, the probability of 
falsely generated genuine hashes by non-authorized users gets higher. This leads also to a higher CRR. If the 
parameterization of the hash generation is changed by using another tolerance factor (TF), an increasing can be observed 
for both, RR and CR. But, while a saturation appears for the RR at TF=20, the CR rises up to the maximum tolerance 
factor (TF=40) studied. Based on this observation it seems that there is no possibility to increase the RR further more by 
incrementing the TF. Thus, in order to improve the RR even more, other methods have to be studied, e.g. error correction 
mechanisms. In this case, one has also to keep track of the expansion of the CR as counterpart of the RR. 

For potential applications in ID documents, due to limitations in the embedding capacity, the size of the hash as 
watermarking payload should be minimized. For handwriting based biometric hashes in this context the following 
important observations can be summarized: The entropy based feature selection reduced the size of the biometric hashes 
determined for the four semantics significantly. The number of hash elements deflates from 69 to 33 (52.17%) for PIN, 
to 40 (42.03%) for Place and Pseudonym and to 39 (43.48%) for Symbol. However, as shown in our biometric error rate 
analysis in section 5.2.1 the verification performance remains identical before and after the feature selection. For 
example, the best single result is determined for the individual Symbol with an EER of 0.047 before as well as after the 
feature selection. Thus, the size of the biometric hash as a potential watermarking payload was reduced by approx. 50% 
without any influence to the verification performance. 

One aim of our future work is to enlarge the evaluation database to achieve more representative test results. To improve 
the reproducibility even more, also the parameterization can be adjusted to any user registered in the database by 
determining user specific tolerance vectors, which are used to calculate the mapping interval of the Biometric Hash 
algorithm. 

Regarding the entropy based feature selection we are currently working on an enhancement of the selection strategy: In 
order to take the problems caused by intra-class variability and inter-class similarity into consideration, three entropy 
analysis steps are carried out sequently. The first calculates the entropy of the hash elements for each user separately, to 
find those features with a marginal variance, which will be taken over in the reduced feature set. In the second step, those 
features are sorted out which has no entropy over the biometric hashes of all genuine users, since they have no 
contribution to the discrimination between them. The last step will suppress such features, which have zero entropy in 
the comparison of genuine biometric hashes and imposter biometric hashes (random or skilled). 
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